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Short Note

Correcting mesh-based force calculations to conserve
both energy and momentum in molecular dynamics simulations
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The high cost of evaluating forces in molecular dynamics makes it necessary to use approximations. The
most effective approximations for nonbonded 2-body interactions, such as particle-particle particle-mesh,
particle-mesh Ewald, and multilevel summation, split the potential into a short-range part which is evaluated
directly and a long-range part which is interpolated from a mesh. This results in a force that, though still con-
servative, is not translation-invariant, resulting in drift in the linear momentum. A common remedy is to apply
a uniform correction to all forces to conserve linear momentum, but this results in a force that is not conser-
vative. Described here is a mass-weighted correction, based on the simple idea of constraining the center of
mass, which does yield a conservative force.

Consider a system of N particles with masses m; and positions 7 = 7(¢), i = 1,2,..., N, which evolve in
time ¢ as dictated by Newton’s second law of motion

mi7i :Fi(Rath)a (1)

where R denotes 7|, 7, ..., Py. Often linear momentum Zim,-?,- is conserved, which is equivalent to Ziﬁ ;= 0.

In particular, a translation-invariant potential energy function
UFR +d,... .7y +d)=U,...,7y)

yields forces F; = —V;U(R) that sum up to zero.

For a computer simulation the cost of evaluating forces can be very high. In particular, 2-body nonbonded
interactions require (/(N?) operations unless approximations are used. The most efficient approximations are
obtained with methods such as particle—particle particle-mesh [1], particle—-mesh Ewald (PME) [2], and mul-
tilevel summation [3-5], which split the potential into a short-range part calculated directly and a long-range
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part interpolated from a mesh. The use of a mesh yields an approximation U?(R) to the long-range part of the
potential energy which is not translation-invariant. This leads not only to a violation of Newton’s third law
but causes particles to exert forces on themselves [6]! (Methods based on a hierarchical clustering of interac-
tions, such as the fast multipole method [7], do not have this problem; however, they compute forces that are
not conservative [8] and appear to be otherwise less efficient for molecular dynamics [9,4], though these studies
are based on older versions of the methods.)

Failure to conserve linear momentum is at best a nuisance, since it means that even if the center of mass is
initially at rest, it will start moving as the simulation progresses. A common remedy [2,10,11]is to subtract out
the average net force (1/N)>_,F? from each force F*. However, the resulting force is not conservative even if
the original approximate force is conservative. For a conservative force, the Jacobian matrix of F; with respect
to 7; must equal the transpose of the Jacobian matrix of F ; with respect to 7. However, such is not the case for
the adjusted force F2(R) — (1/N)Y_,F(R), whose Jacobian matrix with respect to position 7, is given by

0 (2 1= T
S A N R
5(rvza)-saTa

where 7, is the (i, /)th 3 x 3 block of the Hessian of the potential energy function U*®.

The negative effect of this simple force correction on conservation of energy is observed in [12, p. 30].
A system of 216 rigid SPC waters is simulated for 10 ns in a cube of side length 18.7 A. PME is used with
a 18 x 18 x 18 grid, a direct sum cutoff of 8 A, and the Verlet integrator with a 2 fs time step. The use of
the force correction produces a drift of —0.14 kcal/mol amidst fluctuations of £0.05 kcal/mol. Without the
force correction the drift is not discernible.

A mass-weighted correction to the force is conservative, however. Assume that the initial linear momentum
is zero:

Zmﬂmzo

(which is attained by subtracting a constant velocity from each velocity). Denote the displacement of the cen-
ter of mass by

#R) = —— S (7 — 7 (0)),

Mot

where my = Y, m;, and conservation of linear momentum is equivalent to the holonomic constraint
gR) =0.

This can be combined with the equations of motion (1) by adding constraint forces

m;

—
L

m,-l%— :ﬁ,() + A,

Mot

where 7 is a set of Lagrange multipliers and its coefficient is obtained from the Jacobian matrix of g(R) with
respect to 7. Eliminating ] (by twice differentiating the constraints and substituting in the equations of mo-
tion) leads to

3 2 m; 2
m,-r,-:F,-(...)— !

> Fil..).

Mot

A direct proof that the corrected force is conservative is obtained by defining a corrected potential energy
function

U“(R) = U*(7 — &(R),..., 7y — Z(R)).

This is translation-invariant, and the use of a potential leads to conservative forces
FS(Fry .. y) = —VUS (1. Fy)
m; Pa = - - -
> Fi(f —&R),..., 7y — E(R)). (2)
k

= F*(% — &R),..., 7y — &R)) -

Mot
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The assumption of zero initial linear momentum together with conservation of linear momentum implies

—

Z(R(1)) = 0. Practical numerical integrators also exactly conserve linear momentum, so the corrected force
simplifies to
= .y m;

> _FiR).

Mot %

Extension of this technique to nonzero initial linear momentum is possible using Eq. (2), but the calculations
become more complicated and time consuming. If the term g(R) is omitted, then the force will not be
conservative.

To test the value of the mass-weighted correction, a system of 826 TIP3P water molecules in a cubic box of
length 29.08 A was simulated for 10 ns. Three simulations were performed with the same (equilibrated) initial
positions and velocities: one with no force correction, one with a uniform correction, and one with a mass-
weighted correction. The simulation was performed with NAMD [13] using PME with cubic B-spline interpo-
lation from a 24 x 24 x 24 grid and the Verlet integrator with a time step of 2 fs. A tolerance of 10~° was used
for the direct part of the Ewald sum, which dictates the choice of the parameter in the Ewald splitting.
A switching distance of 7 A and a cutoff of 8 A was used for Lennard-Jones interactions with an XPLOR
switching function (which is continuously differentiable). Rigid water constraints were solved analytically
using SETTLE [14]. Fig. 1 confirms that the force-corrected simulations conserve momentum whereas the
uncorrected simulation terminates with a speed of 0.26 A/ps and a displacement of 1180 A for the center of
mass. (The reason that the plot shows momentum not to be exactly conserved for the two force-corrected sim-
ulations is that NAMD, for parallel performance reasons, outputs the linear momentum before applying the
force correction.) The values plotted in this graph, and the one that follows, are block-averaged over 50-ps
intervals. Fig. 2 shows total energy as a function of time. The simulations without a force correction and with
a mass-weighted correction each experience a little energy drift. Theoretical and empirical evidence [15] indi-
cates that some drift occurs for the Verlet integrator even with a conservative force and a modest stepsize.
However, the simulation with the uniform correction experiences an energy drift that is an order of magnitude
greater. Similar results were also obtained for two other 10-ns simulations. Hence, a simulation with the
weighted correction can be run an order of magnitude longer before temperature change becomes problematic.
(The Verlet integrator is symplectic for a conservative force but merely preserves volume in phase space for a
nonconservative force.)

Implementation of a force correction on a parallel distributed-memory computer requires a reduction oper-
ation followed by a broadcast. Fortunately, the mass-weighted correction is latency tolerant — unlike the uni-
form correction. Practical integrators such as the Verlet scheme and its extension to constraints [16] and to
multiple time stepping [17,18] incorporate force evaluations as impulses and exactly integrate these impulses.
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Fig. 1. Speed of center of mass (A/ps) vs. time (ns) for a periodic cube of 826 TIP3P water molecules with a 2 fs time step. The solid line is
for uncorrected forces, the dashed line for a mass-weighted correction, and the dotted line for a uniform correction to forces.
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Fig. 2. Time-averaged total energy (kcal/mol) vs. time (ns) for a periodic cube of 826 TIP3P water molecules with a 2 fs time step. The
solid line is for uncorrected forces, the dashed line for a mass-weighted correction, and the dotted line for a uniform correction to forces.

Hence force corrections (m; /mmt)/_in introduced at time ¢ = nAtr change the positions by an amount
(t— nAt)AtIn /Mo for ¢ = nAt, which is the same for all particles. Moreover, this remains true as long as only
translation-invariant forces are applied. Hence the correction to positions and velocities need not be applied
until just before the next evaluation of forces that are not translation-invariant. In practice, these forces are

long-range nonbonded electrostatic forces, evaluated using the largest time step. Such a technique is imple-
mented in version 2.6 of NAMD [19].
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